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Abstract—Fully Homomorphic Encryption (FHE), which en-
ables arbitrary computation to be performed directly on encrypted
data, is becoming promising for privacy-oriented applications,
paving the way for widespread adoption of cloud computing
with ideal security. The challenge for FHE lies in the speed-
optimized and area-optimized implementation of Number The-
oretic Transform (NTT), which is the most computation-intensive
primitive in FHE. Moreover, most existing works concentrate on
NTT implementations with small moduli and limited levels of
parallelism. The NTT designs for a wider range of parameters
with high scalability, however, are not fully developed.

This paper proposes an FPGA-based hardware accelerator for
NTT with high speed and area efficiency. A novel algorithmic im-
plementation of NTT modeled on tensor products is first proposed,
which provides high flexibility in parameter sets and high scala-
bility in processing elements (PEs). Different levels of parallelism
are then explored to adapt to the trade-off between performance
and area efficiency. With the help of stride permutation, a non-
conflict data flow control is built to significantly simplify the
memory access pattern, contributing to higher performance of
NTT. Implemented on a Xilinx VIRTEX-7 platform, our RTL-
based design outperforms state-of-the-art FPGA works customized
for FHE by 1.21× ∼ 2.73× in performance and 1.11× ∼ 9.81× in
area efficiency. It can achieve an enhancement of 2.49×/ 1.25×/
2.53×/ 2.15× on average on the resource usage of LUTs/ FFs/
BRAMs/ DSPs, respectively.

I. INTRODUCTION

Due to the growing recognition on the importance of data
privacy and integrity, many privacy-preserving computing tech-
niques have been proposed for a wide range of scenarios such as
cloud computing [1], secure database search [2], and machine
learning [3], among which FHE has gained broad prospects
thanks to its capability of computing directly on encrypted
data [4]–[6]. Despite the widely adoption in privacy-oriented
applications, the efficiency of FHE is far from enough. Because
of the compulsory computations on polynomials and vectors,
the implementation of FHE is still 10,000× to 100,000× slower
compared with computation on unencrypted data executed
in an optimized software [8]. These computation-intensive
operations are the fundamental computations in FHE called
primitives including modular addition, multiplication, NTT and
automorphism, which can form various functional units and
implement homomorphic operations. Based on the fact that all
FHE schemes use the same data type for ciphertexts: polyno-
mials where each coefficient is an integer modulo a modulus
[8], accelerating FHE primitives can be a feasible strategy,
e.g., designing fully pipelined modular multiplications [13],
vectorized automorphism unit [8], highly-parallelized NTT
architectures [22] boosted by hardware, etc. Among all FHE

primitives, NTT forms the main bottleneck and occupies the
primary computing resources, e.g., Microsoft SEAL, an open-
source library for one of the FHE schemes (CKKS), spends
54.01% of the entire time on computing NTT transformations
[7]. Therefore, by accelerating NTT on hardware, one can
dramatically improve the performance of FHE applications,
paving the way for general and practical privacy-preserving
applications. As one of the hardware platforms, FPGA offers an
appealing prospect for acceleration with high parallelism and
superior programmability, for which our efforts will focus on
FPGA-based NTT implementation.

In addition to the performance issue, the flexibility in NTT
parameters is also of great significance. Not like small sizes
of polynomials (28 ∼ 210) and modulus (14-bit) needed in
prior NTT works for traditional cryptography applications [14]–
[21], FHE requires substantially larger data to gain as much
computation depth as possible with tolerable noise since FHE
schemes are based on learning with errors (LWE) problems
[9]. Typically, the modulus size in FHE is larger than 109-
bit, and the ciphertext polynomial size should be 211 ∼ 215

for practical applications [8]–[12]. Moreover, different FHE
schemes apply a wide range of parameters, leading to the
significance of flexibility. The large size of FHE parameters
also results in the intensive occupation of hardware resources,
making area efficiency a significant factor. In conclusion, an
efficient hardware implementation for NTT with high area
efficiency and flexibility is in great demand.

However, existing NTT implementations with high perfor-
mance on FPGA mainly concentrated on the small specific
modulus with fixed polynomial sizes [14]–[21]. These designs
can carry out elaborate optimizations based on the unique
identity of that modulus to obtain high speed. All of these works
are fixed with 2 or 4 butterfly units and can not be changed.
Though satisfying the requirements for some cryptography
applications, they are insufficient for FHE applications due
to their small size and poor flexibility. Work [22] presented
two 64-PE architectures and supported large FHE parameters
with high performance at the cost of considerable resources. It
is applicable to any NTT-friendly prime modulus with word-
level Montgomery reduction algorithm. However, the flexibility
is limited because the optimization only aims at a modulus
length from 20 to 32 bits. On the other hand, some state-of-
the-art scalable NTT works with flexibility have restrictions
on performance and area efficiency [13] [24] [28]. Due to
their complex data flow between NTT stages, the physical



routing when implemented on hardware can be intractable
with the increment of modulus size and PEs, limiting the
concurrency and extension. Also, high memory bandwidth will
restrict the frequency and increase the latency significantly.
Work [23] targets an area-efficient and scalable NTT design,
which offers considerable advancements over the prior state-of-
the-art works. However, its memory footprint needs improve-
ments, which is a significant obstacle when this NTT design is
embedded into FHE design.

To fill the research gap, we propose an area-efficient and
scalable accelerator for NTT based on FPGA. In detail, our
contributions in this work are summarized as follows:

1) We propose a novel model for NTT using tensor products
to exploit the inherent algebraic structure for high parallelism.
Based on our review, this is the first work to apply tensor
products to NTT designs. Our model provides an analytic
tool for various optimizations, including an improved memory
access scheme of coefficients and twiddle factors at each stage.

2) We develop a simplified and non-conflict memory access
pattern to lower the complexity of data flow for high scalability
and area efficiency using stride permutation based on the
model. We also reduce the storage of twiddle factors and keep
them consistent throughout the computation by figuring out the
underlying relationship between their address and value.

3) We implement a flexible and scalable NTT hardware
architecture with high area efficiency on the Xilinx VIRTEX-7
FPGA platform using Verilog. Experimental results indicate the
advantage of our work in performance and area efficiency. The
flexibility can be shown from the adaptability in a wide range
of parameter sets, while the scalability is embodied in the easy
extension of the number of PEs to achieve different degrees of
parallelism.

The organization of this article is as follows. Section II
provides the basic knowledge about NTT operation and ten-
sor products. Detailed formulation and hardware design are
provided in Section III and Section IV, respectively. Our
implementation results and comparison with prior works are
shown in Section V.

II. BACKGROUND

A. Number Theoretic Transform

NTT is a method to perform fast multiplication on integer
polynomials, which can reduce the complexity of polynomial
multiplication from n2 to nlogn. Two integer polynomials are
converted into the NTT domain, and then only element-wise
multiplication is needed instead of polynomial multiplication.
After that, INTT is used to transfer the products from the NTT
domain to get the actual results of the polynomial multiplica-
tion. NTT is similar to Fast Fourier transform (FFT) but has
no roundoff errors.

NTT is one of the discrete Fourier transforms defined over
the quotient ring Zq of the integers modulo a prime q. It maps
N polynomial coefficients (x0, x1, ..., xN−1) in Zq into NTT
domain by the form y(m) =

∑N−1
n=0 xnω

mn
0 mod q, where N is

the transform length i.e., the number of polynomial coefficients
and prime q is the modulus. ω0 is the primitive root modulo

N in Zq satisfying the condition: every integer coprime to N
is congruent to a power of ω0 modulo N . The powers of ω0

used in the transform are called twiddle factors. They have the
following features: ωN

0 ≡ 1 mod q and for any integers a, b,
if a ≡ b mod q, then ωa

0 ≡ ωb
0 mod q. Similarly, INTT is

given as z(m) = N−1
∑N−1

n=0 ynω
−mn
0 mod q. N and the bit

length of q are associated with the flexibility of NTT designs,
which form the parameter set in a later discussion.

B. Residue Number System

Overwhelming computation cost will be caused by long
vectors’ arithmetic [8], which is the main challenge in FHE.
Residue Number System (RNS) provides a feasible method
for partitioning large FHE modulus into several acceptable
ones. It enables representing a single polynomial with wide
coefficients as multiple polynomials with narrower coefficients.
The modulus Q is chosen to be the product of L smaller
coprime integers, i.e. Q = q1q2 · · · qL. Then a polyno-
mial in ZQ can be represented as L residue polynomials in
Zq1 ,Zq2 , · · ·,ZqL . All FHE operations can be carried out under
RNS representation, which can have either better or equivalent
complexity than operating on one wide-coefficient polynomial
[8]. RNS can also offer a level of parallelism in NTT design.
Several residue polynomials can be computed in parallel in
separate NTT modules, which can further exploit the inherent
parallelism of FPGA. In this work, RNS is used to speed up
FHE-friendly NTT operations and extend the design to much
larger parameters.

C. Tensor Products and Stride Permutation

Tensor Decomposition is the scheme using a sequence of
tensors as fundamental building blocks of a single complicated
operation. Tensor products can offer a mathematical formu-
lation for presenting and analyzing Digital Signal Processing
(DSP) Algorithms in a unified format using matrix factorization
as a form of Tensor Decomposition. They can manipulate the
factorization of NTT matrices and thus provide easy conversion
between vector processing and parallel processing to match
specific hardware architectures with their inherent algebraic
structure [25]. Tensor products can also offer substantial flexi-
bility in terms of the degree of parallelism. AM ⊗BL denotes
the tensor product of two square matrices A and B whose sizes
are M × M and L × L respectively. It means every element
of the first matrix A is replaced by the product (which is also
a matrix) of this element and the whole second matrix B, and
finally a matrix of size ML will be obtained.

A parallel operation and vector operation using tensor prod-
ucts are represented as (IL ⊗AM )x and (AM ⊗ IL)x, respec-
tively. IL denotes the L × L identity matrix and A denotes a
matrix of size M . x is the vector of size ML. Representation
IL ⊗ AM corresponds to parallel processing, which means
there are L separate processors used for the same computation
of consecutive segments of x in parallel, while representation
AM ⊗ IL corresponds to vector processing that can perform
a vector computation of AM directly on the sub-vectors of
x. Due to the inherent algebraic structure of IL ⊗ AM and



AM ⊗ IL, these operations are more suitable for parallel or
vector processors respectively. For parallel processing, when
less than L separate processors are available, the following
identity is used:

IL ⊗AM = IL1 ⊗ (IL2 ⊗AM ), L = L1L2 (1)

The operation IL2 ⊗ AM is assigned to L1 processors to
perform the computation separately. This factorization provides
a theoretical formulation for the scalability of parallelism.

Stride permutation, a type of permutation, is denoted as
P (N,M). It represents the N -point stride M permutation and
P (N,M)x represents the strides through vector x. This matrix
P (N,M) can be decomposed using the following rule:

P (N,M) = P (N,M1)P (N,M2), M = M1M2 (2)

Stride permutation provides a mathematical tool to inter-
change parallel processing and vector processing, giving the
flexibility to partially parallelize or vectorize a tensor product
computation [25]. The bridge between parallel processing and
vector processing provided by stride permutation is formulated
as commutation theorem:

P (N,M)(IL ⊗AM ) = (AM ⊗ IL)P (N,M), N = ML (3)

The granularity of parallelism and vectorization can be con-
trolled to different levels using this theorem. Therefore, algo-
rithms using tensor products can adapt to one certain architec-
ture and take full advantage of its properties.

Stride permutation also provides a mathematical language
to control the required data flow in NTT designs. All NTT
algorithms contain multiple stages. A series of operations are
performed at each stage, after which data movement is needed
to get the correct data order for the next stage. This memory
access pattern can be extremely complex when N is large,
holding back the computation speed. Stride permutation can
reduce the complexity by providing the processors with auto-
matic addressing, a natural way of representing data movement.
The process will be explained in detail in the next section.

III. FORMULATION AND ALGORITHM OPTIMIZATION

A. Formulation

Cooley-Tukey FFT algorithm using tensor products has been
developed for a long time [25]. In this work, we generalized
it to NTT and modeled it using tensor products. The NTT
operation in our work is defined as follows:

NTT (x) = F (2k)x mod q (4)

where k = log2N and x is the vector of input polynomial with
N coefficients. NTT matrix F (2k) is a square matrix of order
2k, which is used to transform the polynomial of size N into
NTT domain. It can be decomposed into a smaller matrix with
different sizes to get different levels of parallelism or vectoriza-
tion. Our target platform is FPGA. To take full advantage of its
high-parallelism property, full parallel optimization is utilized
to factorize the whole NTT matrix into F (2) of order 2. The
function of F (2) can be represented by the butterfly operation.

The factorization is transferred from FFT [25] and shown in
the following equation:

F (2k) = [

k∏
l=1

(I2l−1 ⊗F (2)⊗ I2k−l)(I2l−1 ⊗T2k−l(2
k−l+1))]Q(2k)

(5)
where k stages are needed. l denotes the variable showing

the current stage number. Q(2k) is the matrix used to complete
the bit reversal operation on vector x that can be implemented
in the preprocessing. We use x̄ to denote the vector after
bit reversal. Twiddle factor (TF) matrix T2k−l(2k−l+1) is a
diagonal matrix specified by the following rule [25]. We define
the diagonal matrix DR(S) as:

DR(S) = diag(1, ω, ω2, · · · , ωR−1) (6)

where ω is the primitive root modulo S. Then the expression
of TR(S) is obtained from DR(S):

TR(S) = diag(IR, DR(S), DR(S)
2, · · · , DR(S)

G−1) (7)

where S = RG. TR(S) can be viewed as G diagonal blocks
of size R. Based on the rule, all the elements in this matrix are
different powers of ω, varying from stage to stage. Therefore,
(I2l−1 ⊗T2k−l(2k−l+1)) is the matrix with 2l−1 twiddle factor
matrices. It is denoted as Z0(l) where l suggests that this matrix
changed with the stage.

B. Algorithm Optimization

At each stage, the main operator (I2l−1 ⊗ F (2) ⊗ I2k−l)
is of mixed type involving 2l−1 copies of the vector operation
F (2)⊗I2k−l , which is called multidimensional tensor products.
The factorization of multidimensional tensor products can be
expressed as follows with the help of stride permutation [25]:

IN1
⊗AN2

⊗IN3
= P (N,N1N2)(IN1N3

⊗AN2
)P (N,N3) (8)

where N = N1N2N3. This can convert the multidimensional
tensor products into full parallelization, which is plugged into
equation (5):

NTT (x) = [

k∏
l=1

P (2k, 2l)(I2k−1 ⊗F (2))P (2k, 2k−l)Z0(l)]x̄ mod q

(9)
The corresponding data flow of this deduced equation is

shown in Fig.1(a) in the case of N = 8. There are k stages.
The operation at each stage is divided into three parts naturally,
including Modular Multiplication (MM), Tensor Products (TP)
and readdressing (RA) represented by stride permutation ma-
trices. Wr means the write operation after these calculations.
This data flow suggests that two readdressing operations are
required at each stage, which will cause much overhead in
memory transfer of coefficients especially when N is large.
Optimizations can be conducted by exploiting the properties of
stride permutation. Specifically, equation (9) is unfolded along
the stages first and the following expression is obtained:

NTT (x) =[P (2k, 2)(I2k−1 ⊗ F (2))P (2k, 2k−1)Z0(1)] · · ·
[P (2k, 2(l−1))(I2k−1 ⊗ F (2))P (2k, 2k−(l−1))Z0(l − 1)]

[P (2k, 2l)(I2k−1 ⊗ F (2))P (2k, 2k−l)Z0(l)] · · ·
[P (2k, 2k)(I2k−1 ⊗ F (2))P (2k, 20)Z0(k)]x̄ mod q

(10)



The first stride permutation P (2k, 2l) at each stage l can be
factorized into two stride permutations based on equation (2),
i.e., P (2k, 2l) = P (2k, 2l−1)P (2k, 2). After the partition, the
former can be a part of the last stage (l−1) while the latter can
stay at the present stage (l). This is specified in the following
equation:

NTT (x) =

[P (2k, 2)(I2k−1 ⊗ F (2))P (2k, 2k−1)Z0(1)P (2k, 2)] · · ·
[P (2k, 2)(I2k−1 ⊗ F (2))P (2k, 2k−(l−1))Z0(l − 1)P (2k, 2l−1)]

[P (2k, 2)(I2k−1 ⊗ F (2))P (2k, 2k−l)Z0(l)P (2k, 2l)] · · ·
[P (2k, 2)(I2k−1 ⊗ F (2))P (2k, 20)Z0(k)P (2k, 2k)]x̄ mod q

(11)
This leads to a unified formulation at each stage. The novel

theoretical formulation is presented in equation (12):

NTT (x) = [

k∏
l=1

P (2k, 2)(I2k−1 ⊗ F (2))Z2k,l]Q(2k)x mod q

(12)
where diagonal matrix Z2k,l satisfies

Z2k,l = P (2k, 2k−l)(I2l−1 ⊗ T2k−l(2k−l+1))P (2k, 2l) (13)

Therefore, the complexity of the memory access pattern of
the coefficients is converted into the choice of twiddle factors
at each stage, which can be scheduled before NTT operation
starts. Z2k,l at stage l denotes how to implement this schedule
which will be discussed later.

When calculating equation (12) from right to left, a matrix-
vector product can always be obtained, which will be specified
as different operations. And thus it is in the first stage when
l = k. The complete data flow of the NTT operation after
optimization is shown in Fig.1(b) in the case of N = 8.
Each stage contains three matrix operations including Z2k,lx,
(I2k−1 ⊗F (2))u and P (2k, 2)v, corresponding to the modules
of Modular Multiplication (MM), Tensor Products (TP) and
readdressing (RA) in the hardware design, respectively. Vector
x, u and v are the vectors obtained from the former matrix
operation. For the first stage, x is the original input vector
after bit reversal operation Q(2k).

Z2k,lx performs modular multiplication of every coeffi-
cients in vector x and the corresponding twiddle factor in
Z. The matching twiddle factor is obtained from TF matrix
T2k−l(2k−l+1) after both tensor product and stride permutation
operations. This mathematical equation (13) is converted into a
practical format for FPGA, comprising one part of the memory
access pattern. The details will be provided in the next section.
For TP part (I2k−1 ⊗ F (2))u, all the multidimensional tensor
products are transferred into parallel operations without vector
processing. It means the N -point NTT matrix is decomposed
into N/2 2-point NTT matrix, all of which are independent
and thus can be implemented in parallel using separate PEs.
Modular addition and subtraction are employed to implement
each TP operation. RA implementation is also a part of the
memory access pattern. It corresponds to the stride permutation
operation P (2k, 2)u, which is the same regardless of stages,
making it clear to transfer data between stages.

Algorithm 1 describes the FPGA-friendly implementation

(a) Data Flow of Originally Deduced NTT Operation

(b) Data Flow of Optimized NTT Operation

Fig. 1. Data Flow of NTT Operation when N = 8

Algorithm 1: NTT modeled on Tensor Products

Input: x(x) ∈ Z[x]/(xN + 1)

Input: Transform Length N , Modulus q

Input: Twiddle Factor ω0, PE number α
Output: NTT(x) ∈ Z[x]/(xN + 1)

k = log2N ;
β = (2k−1)/α;
for l from k by −1 to 1 do

for i from 0 by 1 to (α− 1) do
for j from 0 by 1 to (β − 1) do

δ = i · β + j

ω̂ = ω
⌊ 2δ+1

2l
⌋2l−1

0

v[δ] = x[2δ] + x[2δ + 1] · ω̂ mod q

v[δ + 2k−1] = x[2δ]− x[2δ + 1] · ω̂ mod q

end
end
x = v

end
return x

details of NTT operation modeled on tensor products based
on our optimized theoretical equation. The vector x is the
original input after bit reversal, and the output NTT (x) is the
converted form of the original vector in NTT domain. MM,
TP and RA are expressed into achievable forms on FPGA in
Algorithm 1 and will be pipelined to improve the performance
in later implementation. It should be noted that the second
loop in Algorithm 1 is performed in parallel without any delay.
This is because multiple processing elements (PEs) are utilized



for the same operations simultaneously. Denote the number of
PEs as α. Then the TP part (I2k−1 ⊗ F (2))u in equation (12)
can be decomposed into (Iα ⊗ (Iβ ⊗ F (2)))u, i.e. α PEs are
performing a smaller tensor product operation (Iβ ⊗ F (2))u
and corresponding modular multiplications at the same time.
In this way, we naturally control the granularity of the parallel
computation in this algorithm by changing α and fitting the
computation to the number of available PEs.

IV. HARDWARE DESIGN

A. Memory Access Pattern

Managing the complex data movement presents a substantial
problem for NTT hardware designs. Memory access pattern
varies in different NTT algorithms and can be very challenging.
The situation is worse when multiple PEs are considered to
provide high scalability since an additional constraint is needed
to decide which PE corresponds to the address of a certain
coefficient or twiddle factor apart from its order in one stage.
Therefore, it is necessary to simplify and manage the data
movement in NTT implementation. The management scheme
contains two patterns: control the read or written address of the
coefficients required at each stage and the address of twiddle
factors needed in the MM Module.

Under the novel model proposed by this paper, the complex-
ity of these two patterns can be converted to each other. The
movement of the coefficients has higher overhead due to the
memory transfers in both writing and reading processes while
the pattern of twiddle factors is simply required in the MM
module with no need for changing their places in memory at
different stages. Thus the above derivation from equation (5)
to (12) in Section III is fulfilled to keep memory transfers to a
minimum. A detailed analysis of their implementation is shown
in this section.

The data movement of the coefficients is called readdressing.
Readdressing is required to guarantee that the written or read
address for the stage is correct. With the help of stride permu-
tation factorization from equation (5) to equation (12), there is
no variable l in matrix P (2k, 2). Thus, the fixed readdressing
pattern is obtained in Fig.1(b), which will not change with
stages. This means the written address of the output data at the
end of each stage can be confirmed once N and PE number are
determined. Therefore, the complex memory access scheme of
the coefficients is simplified by the unchangeable readdressing
pattern at each stage which is beneficial to get the maximal
degree of parallelism.

Implementing the automatic choice of twiddle factors for
each coefficient in every MM operation is a non-trivial prob-
lem because it is quite different at various stages. It can be
scheduled before NTT operation starts based on the analysis
of equation (13). This equation provides a clear mathematical
formulation on how to implement this addressing pattern of
twiddle factors for MM Module. When a premultiplied stride
permutation matrix times a diagonal matrix, the permutation
is performed on the rows of that matrix, i.e. the row order of
the matrix will be exchanged based on the stride permutation.
In the same fashion, a postmultiplied stride permutation matrix

can change the column order of the matrix. These two processes
are shown in Fig.2.

Fig. 2. One Example of Premultiplication and Postmultiplication by Stride
Permutation on a Matrix

It is noticed that these two stride permutation matrices in
equation (13) have the feature: P (2k, 2k−l)P (2k, 2l) = I2k .
Therefore, after the premultiplication and postmultiplication
by stride permutation, the matrix Z0(l) changes back to a
diagonal matrix with a different order of diagonal elements.
Fig.2 also provides an example for this process. Define the
vector composed of diagonal elements in Z0(l) as z0. Then the
elements in P (2k, 2k−l)z0 are exactly the diagonal elements in
the obtained matrix Z2k,l. According to the construction rule
of Z0(l) from equation (6) and (7), z0 is expressed as:

z0 = (

T
2k−l (2

k−l+1)︷ ︸︸ ︷
1, 1, · · · , 1︸ ︷︷ ︸

2k−l

, 1, ω1, ω2, · · · , ω2k−l−1︸ ︷︷ ︸
2k−l

, · · ·

︸ ︷︷ ︸
2l−1

) (14)

where ω denotes the primitive root modulo 2k−l+1. In this ex-
pression, T2k−l(2k−l+1) points out the elements in the twiddle
factor matrix, while the values under the expression show that
2k−l elements in each group or 2l−1 twiddle factor matrices
are required.

After simplifying equation (13) as above, further exploration
is performed on P (2k, 2k−l)z0. This expression means vector
z0 is segmented into 2l groups of size 2k−l and every time
one element is taken out from each group in order to get a new
permutation of the whole vector until there are no elements in
any group. Then the elements in the diagonal of matrix Z are
obtained:

z = (1, 1, · · · , 1︸ ︷︷ ︸
2l

, 1, ω1, · · · , 1, ω1︸ ︷︷ ︸
2l

, · · · , 1, ω2k−l−1, · · · , 1, ω2k−l−1︸ ︷︷ ︸
2l︸ ︷︷ ︸

2k−l

)

(15)
Based on the deduction of equation (15), we propose a novel

method to explore the inherent relationship between the value
and address of the twiddle factors and eliminate duplication.
ω0 denote the primitive root modulo 2k, which is the known
parameter in the preprocessing. The relationship between ω0

and ω can be expressed as ω ≡ ω2l−1

0 mod q according to
the property of twiddle factors [25]. It means that all ω in
twiddle factor matrix T can be replaced by ω0. Therefore,
only the power of ω0 needs to be explored to get the final
address of a specific twiddle factor determined by Z2k,l. Since
all the powers of ω0 are less than 2k−1, only N/2 different
powers of ω0 are required to be pre-loaded in order, highly
reducing redundancies in the storage of twiddle factors. Then



the complexity of choosing the correct twiddle factor in MM
module is converted to the pattern of finding the corresponding
address of pre-loaded twiddle factors. The expression of z
yields the control logic (i.e. the address) of twiddle factors
required at each stage for each coefficient. Denote the address
as Zr and the current stage number is l. Based on equation (15),
when the order of the coefficient is even, Zr = 0 which means
the relevant twiddle factor is 1; when the order of the coefficient
is odd which is denoted as t, Zr = ⌊ t

2l
⌋2l−1. Thus, the memory

access pattern for twiddle factors is simply described by Zr,
which is suitable for expansible designs.

In conclusion, simplified and non-conflict memory access
patterns for coefficients and twiddle factors are developed
respectively based on the model, lowering the complexity of
data flow. As a result, the design is more suitable for extension
and high parallelism with better area efficiency compared with
traditional NTT designs [13] [22].

B. PE Architecture with Flexibility and Scalability

The whole architecture of our hardware design is shown in
Fig.3, taking 4 PEs as an example. The correspondence between
the theoretical formulations and their hardware implementation
is presented in Table I. The architecture of one PE is shown
in Fig.3, which implements the main operations in the NTT
module. A PE contains a pair of multiplexers, several shift
registers, one modular multiplication, and one tensor product
operator. Only one modular multiplication is required in each
PE to get one of the inputs for the tensor product because of
our simplified memory access pattern of twiddle factors. For the
other input, the shift registers are used to implement the time
synchronization. Tensor product operation performs modular
addition and subtraction at the same time.

Among these modules, the implementation of modular mul-
tiplication is relatively essential, which has a significant in-
fluence on the flexibility and frequency of the design. We
selected Montgomery modular reduction algorithm along with
the integer multiplication for modular multiplication design.
Specifically, integer multiplication uses DSPs and is fully
pipelined. Prior work [22] leveraged the property of NTT-
friendly modulus q ≡ 1 (mod 2N) in Montgomery modular
reduction algorithm, avoiding one multiplication with high bit
width every step in the traditional Montgomery algorithm. Thus
it won’t reduce the frequency. In most other NTT hardware
designs, special or fixed parameters are used, so the design is
not flexible and only adapts to specific applications. However,
our PE hardware is applicable to different parameter sets since
our tensor product operation is the fundamental unit suitable
for any N = 2k and modular multiplication design is flexible
for multiple choices of modulus q.

Define the number of PEs as α. To avoid read/write conflict
and fully pipeline, two BRAM groups named DATA_BRAMs and
MID_DATA_BRAMs are instantiated. They respectively contain
α BRAMs of size N/α shown in Fig. 3. Multiplexers are
used to decide the group and the exact BRAM in that group
when reading based on the PE number and the stage number.
Also, α/2 twiddle factor BRAMs TF_BRAMs of size N/2
are needed to match the requirement of twiddle factors from

Fig. 3. Architecture of the Complete Hardware Design

TABLE I
CORRESPONDENCE BETWEEN THE THEORETICAL FORMULATIONS AND

THEIR HARDWARE IMPLEMENTATION

Theoretical
Formulations I2k−1 ⊗ F (2) Z2k,lx P (2k, 2) & Z2k,l

Hardware
Implementation

Tensor
Product

Modular
Multiplication Control Unit

multiple PEs. N input data and N/2 twiddle factors are loaded
into DATA_BRAMs and TF_BRAMs respectively before the NTT
operation starts. After a series of operations of each stage,
the outputs should be written into the correct BRAM group.
The judgment is made by the parity of k and current stage
number l. They are denoted by k_parity and l_parity. If
they are the same, the outputs of that stage will be stored
into the corresponding group DATA_BRAMs. Otherwise, group
MID_DATA_BRAMs will be chosen.

In addition to determining the memory group, a clear picture
of managing the data flow between stages among BRAMs is
implemented by the control unit. The details are not shown in
Fig.3 to prevent clutter. This global control unit can provide the
addresses of each read or written coefficient and twiddle factors
to govern the data flow, which implements the function of the
memory access pattern introduced in the previous subsection.
Because of our simplified memory access pattern as presented
in the last subsection, control unit is not as complicated as other
works, especially when routing with multiple PEs. Therefore,
our architecture can be easily extended for multiple PEs.

Also, our hardware design can naturally support INTT with
high flexibility and scalability. INTT requires an additional
operation to multiply N−1 after all the stages finish compared
with NTT. This operation is implemented by the modular
multiplication module with no need for additional resources.

In summary, our NTT implementation is flexible and scal-
able, which can support a wide range of parameters and satisfy
different demands in NTT operations, including high perfor-
mance, low area, and performance-area balance by changing
the number of PEs.



Fig. 4. Performance and Area Efficiency of Different PE Numbers on FPGA

C. Design-Space Exploration

After the complete hardware design, we present the design-
space exploration in terms of the degree of parallelism (i.e.
PE number) in one NTT operation to show the scalability
of our work. Both latency and resource usage are crucial
to evaluate NTT designs in terms of performance and area
efficiency. Thus we denote the latency as the time required for
one NTT operation and define ATP as the area (LUT usage)
time (latency) products to quantify them, respectively. Latency
reflects the throughput of NTT operations while ATP can mirror
the efficiency of the resources used.

The number of PEs i.e. α reflects the degree of parallelism in
one NTT operation and is associated with the performance and
area efficiency of NTT, which can be a trade-off in different
scenarios. Therefore, design-space exploration can be done in
terms of PE number achieved by our scalable NTT design.
The implementation results of latency and ATP with various
PE numbers are demonstrated in Fig.4. The exploration is
carried out on different parameter sets and they all share similar
properties that will be shown later. So for simplification, only
the results of one parameter set (N = 4096, q = 32-bit)
are shown. The latency is declining along with the increase
of PE number since the parallel computation leads to better
performance. Despite the increment of resources all along, ATP
decreases when PE number is less than 8 and grows quickly
after that, suggesting the best area efficiency appears at α = 8.
This serves as a guide on how to determine the most suitable
PE number for various requirements. If high performance is
demanded, 32 PEs or even 64 PEs can be chosen regardless
of resource usage. However, instantiating 128 PEs is not a
good idea since its performance increase is not comparable
with the additional resource usage i.e. the area efficiency is
not acceptable from Fig.4. Typically, another consideration is
how to get balanced performance and resource usage, which is
relevant to area efficiency. When α = 8, ATP is the lowest and
thus best area efficiency is obtained. It is chosen in this situation
due to a much better performance compared with α = 4, which
has a similar ATP. Therefore, after design-space exploration,
PE number is explored to achieve a good tradeoff, providing a
foundation for later discussion.

Fig. 5. Performance and Area Efficiency of Different Transform Lengths

V. EVALUATION

Our hardware design for both NTT and INTT is written in
Verilog RTL, which is then synthesized and implemented with
the default strategy using Xilinx Vivado 2021.2 on the Xilinx
VIRTEX-7 FPGA platform (xc7vx690tffg1761-2) including
433200 LUTs, 866400 FFs, 1470 BRAMs and 3600 DSPs.

It is meaningful to compare the NTT implementation only
when the parameters are the same including the transform
length N and the bit length of the modulus q. Because of our
adaptable design, we can easily modify N and q to obtain
the corresponding results. Therefore, we select the parameters
in the state-of-the-art works based on FPGA to make the
comparison convincing.

The evaluation of our work is divided into three parts. Firstly,
the implementation results in terms of different transform
lengths are shown to indicate the flexibility of our work. The
comparison with the state-of-the-art works for FHE applications
is then analyzed in detail. Meanwhile, the best PE number is
chosen to match different scenarios based on the above design-
space exploration. After that, a comparison of small parameters
is also demonstrated to show the versatility of our work.

A. Versatility in terms of Transform Lengths

Fig. 5 shows the performance and area efficiency when the
transform length N is assigned to various values from 256
to 16384 with q = 32-bit and 8 PEs. This wide range of N
covers the required parameters from traditional cryptography
applications to FHE, suggesting the versatility of our work.
The latency increases as N becomes larger shown in this figure,
while the resource usage required is quite similar regardless of
N according to our results. Thus, the growth trend of ATP is
the same as latency. Also, the operating frequency of our design
won’t change with N if the bit length of q and PE number stay
the same, which indicates the adaptability of our work when
applied to large parameter sets.

B. Comparison to Works Customized for FHE

Specifically, the comparisons between our solution and ex-
isting works for FHE are based on three commonly-used sets
of parameters shown in table II. Set A and B can be the
fundamental modules to implement Set C or even larger pa-
rameter sets thanks to RNS. Table III demonstrates a thorough



TABLE II
FHE-FRIENDLY PARAMETER SETS

N q
Set A 4096 32-bit
Set B 4096 60-bit
Set C 4096 180-bit

comparison between prior works and our work. Four labels are
attached to these works: scalable designs with different degrees
of parallelism, designs with fixed parallelism, flexible designs
for various parameter sets, and fixed and optimized designs
for one or few specific moduli. The normalized latency and
ATP of prior works compared with our design are shown when
the corresponding results of our design are set to 1. These
normalized results are exactly the improvements of our work
in latency and ATP. Similarly, the normalized resource usage
including LUT, FF, BRAM and DSP is also demonstrated under
the original results in Table III, which makes our improvement
in resource reduction explicit.

For Set A, we first compare our design with the RTL-based
work aiming at scalability [23]. Work [23] employed a divided
NTT/INTT design, which requires redundant resources. Our
unified and reconfigurable NTT/INTT design can significantly
reduce the usage of LUTs and BRAMs. The latency of our
design is slightly worse because of 30% fewer DSPs than
their work. Even so, our area efficiency is improved by 1.99×.
Our work is also compared with two highly parallelized NTT
hardware architectures with 64 PEs including the iterative and
the four-step CooleyTukey algorithms (ITER and CT are used
to represent them in Table III) [22]. The results show that our
latency is higher. However, it is worth noting that they use much
more DSPs than ours and have no scalability. Despite that,
our area efficiency is still better. The improvement of resource
usage can be up to 3.44×, 3.39× and 4.25× in terms of LUTs,
BRAMs and DSPs, respectively.

For Set B, we compare our design with a state-of-the-art scal-
able design on FPGA [13]. Work [13] employed iterative NTT
algorithm which is an in-place algorithm with a data movement
scheme of high complexity. 8 PEs and 32 PEs are chosen in
table III to obtain balanced and performance-optimized designs,
respectively. Because of our simplified memory access pattern,
higher frequency and lower resource usage including LUTs
and BRAMs can be obtained. Therefore, our work can achieve
1.65× to 1.96× improvement in latency and 3.74× to 3.86×
improvement in ATP, which suggests that our design has the
enhancement in both performance and area efficiency regardless
of the change of PE numbers. Our LUT usage save is more
notable as the degree of parallelism increases, indicating our
design’s benefit for high-parallelism scenarios.

For Set C, the extended version of our work is carried out
to adapt to the large parameter based on RNS. Work [27]
applied algorithmic optimization techniques on NTT operation
and block-level pipeline strategies to increase the throughput.
Algorithm-level parallelism offered by RNS was employed
to reduce latency. However, our work can still achieve an

improvement of 2.74× in performance although 32 fewer DSPs
are used. Moreover, due to the complicated memory access
pattern of work [27], some strategies were used to eliminate
conflicts at the cost of resources and thus the area was not
optimized. Our advantage in resource usage is noticeable from
Table III. Another comparison for Set C is also from work
[22]. In this case, the number of our extended NTT modules
will be adjusted in addition to the PE number to accommodate
various circumstances. We set up α = 32 in our design
to achieve comparable performance. To compare with ITER
algorithm implementation in work [22], our work is extended
with three same NTT modules to balance performance and area.
Although our work has slightly higher latency due to much
fewer DSPs, the area efficiency is 1.57× higher than work
[22]. Meanwhile, since CT algorithm implementation in [22] is
concentrated on high performance, we adjust our design to six
same NTT modules and achieve 1.21× and 1.37× performance
and area efficiency enhancement, respectively. Moreover, all
kinds of resources required in our work are lower than work
[22], indicating a better area optimization of our work.

C. Comparison to Works with Small Parameters

When compared with existing state-of-the-art works designed
and optimized for a specific modulus q in a specific application,
we adjust our PE number to match the parallelism, and the
degree of parallelism in each work is presented to clarify the
comparison. The comparison results are shown in Table IV. For
parameter set 1024, 14-bit, prior works employed 4 butterfly
units to decrease latency which is fixed and cannot be altered in
works [14] [19] [20] [21]. Our latency and ATP improvement
can be up to 3.00× and 6.69× respectively. However, when
compared with work [19], [20], our latency and ATP are slightly
higher respectively, which is mainly because they only focus
on one specific modulus and make careful optimization based
on its special property. Even so, we can still achieve either
lower latency or better area efficiency. When compared with
prior RTL-based scalable designs on small parameters [13], it
is superior in both performance and area efficiency regardless
of the number of PEs, with enhancements of 1.62× and 2.05×
on average, respectively.

VI. CONCLUSION

We present an area-efficient and scalable NTT accelerator
for multiple scenarios based on our novel NTT formulation
modeled on tensor products. The memory access pattern is sim-
plified to a large extent by the inherent algebraic structure of our
model. These optimizations can lead to improved performance
and area efficiency along with flexibility and scalability. The
distinguished flexibility and scalability can adapt our work to
various applications with different parameter sets and levels of
parallelism. Later work will focus on a different mathematical
formulation of NTT from this work by manipulating the fac-
torization. This can further decrease memory utilization, which
will have higher adaptability for the whole FHE implementation
in future applications.



TABLE III
OUR IMPLEMENTATION RESULTS AND COMPARISON TO PRIOR FHE-FRIENDLY WORKS

Hardware Design Platform N q
LUTs/FFs/BRAMs/DSPs

(Normalized Area)
Frequency

(MHz)
Latency

(µs) ATP_LUT Normalized
latency

Normalized
ATP_LUT

This Work-8PEa,c Virtex-7 4096 32-bit 6260/7132/20/56 235 13.85 86701 1× 1×

[23]a,c Virtex-7 4096 32-bit
14004/8662/79/80

(2.24/1.21/3.29/1.43) 250 12.3 172279 0.89× 1.99×

This Work-32PEa,c Virtex-7 4096 32-bit 46547/26937/192/448 184 3.11 144761 1× 1×

[22]-ITERb,c Virtex-7 4096 32-bit
70000/-/129/599
(3.01/-/1.34/2.67) 200 2.3 161000 0.74× 1.11×

[22]-CTb,c Virtex-7 4096 32-bit
80000/-/325.5/952
(3.44/-/3.39/4.25) 200 1.75 140000 0.37× 1.26×

This Work-8PEa,c Virtex-7 4096 60-bit 11790/13336/48/112 244 13.36 157514 1× 1×

[13]-8PEa,c Virtex-7 4096 60-bit
23215/-/176/248
(1.97/-/3.67/2.21) 125 26.2 608233 1.96× 3.86×

This Work-32PEa,c Virtex-7 4096 60-bit 43696/50322/192/448 204 4.68 204498 1× 1×

[13]-32PEa,c Virtex-7 4096 60-bit
99384/-/176/992
(2.27/-/0.92/2.21) 125 7.7 765257 1.65× 3.74×

*This Work-8PEa,c Virtex-7 4096 180-bit 17685/20004/72/168 244 26.72 472543 1× 1×

[27]b,c
Zynq

UltraScale+ 4096 180-bit
63522/25622/400/200
(3.59/1.28/5.56/1.19) 225 73 4637106 2.73× 9.81×

*This Work-32PE-1a,c Virtex-7 4096 180-bit 65544/75483/192/672 204 9.36 613492 1× 1×

[22]-ITERb,c Virtex-7 4096 180-bit
140000/-/258/1198
(2.14/-/0.90/1.78) 200 6.9 966000 0.74× 1.57×

*This Work-32PE-2a,c Virtex-7 4096 180-bit 131088/150966/576/1344 204 4.68 613492 1× 1×

[22]-CTb,c Virtex-7 4096 180-bit
160000/-/651/1904
(1.22/-/1.13/1.42) 200 5.25 840000 1.21× 1.37×

ATP_LUT: Area (LUT) Time (latency) Product (lower is better)
a: Scalable designs supporting different levels of parallelism b: Designs with fixed parallelism
c: Flexible designs for various parameter sets d: Designs for the specific modulus
*means the extended version of this work using RNS to compare with other designs.

TABLE IV
OUR IMPLEMENTATION RESULTS AND COMPARISON TO PRIOR WORKS WITH SMALL PARAMETERS

Design Levels of
parallelism Platform LUTs BRAMs DSPs Frequency

(MHz)
Latency

(µs) ATP_LUT Normalized
latency

Normalized
ATP_LUT

N = 1024, q = 14-bit

This Worka,c 1 Virtex-7 578 1.5 3 250 21.02 12150 1× 1×

This Worka,c 4 Virtex-7 1271 5 12 244 5.81 7385 1× 1×

This Worka,c 8 Virtex-7 2304 10 24 241 3.22 7419 1× 1×

This Worka,c 32 Virtex-7 8834 40 96 225 1.32 11661 1× 1×

[14]b,d 4 Zynq-7000 2832 10 8 150 17.45 49418 3.00× 6.69×

[19]b,d 4 Virtex-7 10758 - 36 302 0.85 9144 0.15× 1.24×

[20]b,d 4 Artix-7 798 - 4 234 6.8 5426 1.17× 0.73×

[21]b,d 4 Zynq-7000 4823 - 8 153 8.37 40369 1.44× 5.47×

[13]a,c 1 Virtex-7 575 11 3 125 41.28 23736 1.96× 1.95×

[13]a,c 8 Virtex-7 2584 16 24 125 5.44 13954 1.69× 1.88×

[13]a,c 32 Virtex-7 17188 48 96 125 1.6 27501 1.21× 2.36×
ATP_LUT: Area (LUT) Time (latency) Product (lower is better)
a: Scalable designs supporting different levels of parallelism b: Designs with fixed parallelism
c: Flexible designs for various parameter sets d: Designs for the specific modulus
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